Tree ideals and Cohen reals

Aleksander Cieślak
Wrocław University of Technology

February 2, 2023

Trees and tree ideals
Tree type
Let \mathbb{T} be a collection of trees on $A^{<\omega}$ such that:

- \mathbb{T} consists of perfect trees

Trees and tree ideals
Tree type
Let \mathbb{T} be a collection of trees on $A^{<\omega}$ such that:

- \mathbb{T} consists of perfect trees
- $\forall T \in \mathbb{T} \forall \sigma \in T,\left.T\right|_{\sigma} \in \mathbb{T}$

Trees and tree ideals

Tree type

Let \mathbb{T} be a collection of trees on $A^{<\omega}$ such that:

- \mathbb{T} consists of perfect trees
- $\forall T \in \mathbb{T} \forall \sigma \in T,\left.T\right|_{\sigma} \in \mathbb{T}$
- $\forall T \in \mathbb{T} \exists\left\{S_{\alpha}: \alpha<\mathfrak{c}\right\} \subseteq \mathbb{T}$ all below T and that $\left[S_{\alpha}\right] \cap\left[S_{\beta}\right]=\varnothing$ for $\alpha \neq \beta$ (large antichains)

Tree ideal

The Marczewski tree ideal t_{0} consists of countable unions of \mathbb{T}-nwd sets, where $X \in \mathbb{T}$-nwd if

$$
\forall T \in \mathbb{T} \exists S \leq T, S \in \mathbb{T}, X \cap[S]=\varnothing
$$

Well investigated examples:

- s_{0} - Marczewski ideal
- m_{0}, l_{0} - Miller and Laver ideal
- v_{0} - Silver, Mycielski ideal

Known for not having borel basis. Even $\mathfrak{c}<\operatorname{cof}\left(t_{0}\right)$

As t_{0} does not have borel basis
The Borel part of t_{0}
$\left.t_{0}\right|_{\mathcal{B} \text { or }}=$ borel sets from t_{0}

As t_{0} does not have borel basis
The Borel part of t_{0}
$\left.t_{0}\right|_{\mathcal{B} \text { or }}=$ borel sets from t_{0}

- $\left.s_{0}\right|_{\mathcal{B} o r}=$ countable sets
- $\left.m_{0}\right|_{\mathcal{B} o r}=\mathcal{K}_{\sigma}$ sets
- $\left.I_{0}\right|_{\text {Bor }}=$ not strongly dominating sets

Themes in tree ideals investigation

- Consistency of $\omega_{1}<\operatorname{add}\left(t_{0}\right)$.
- When $\mathfrak{c}<\operatorname{cof}\left(t_{0}\right)$?
- Consistency of $\operatorname{add}\left(t_{0}\right)<\operatorname{cov}\left(t_{0}\right)$.

When $\mathfrak{c}<\operatorname{cof}\left(t_{0}\right)$?

Brendle, Khomskii, Wohofsky

Each of the following implies $\mathfrak{c}<\operatorname{cof}\left(t_{0}\right)$:

- is $(\mathbb{T})=\mathfrak{c}$

When $\mathfrak{c}<\operatorname{cof}\left(t_{0}\right)$?

Brendle, Khomskii, Wohofsky

Each of the following implies $\mathfrak{c}<\operatorname{cof}\left(t_{0}\right)$:

- is $(\mathbb{T})=\mathfrak{c}$
- Constant of 1-1 property for \mathbb{T}

When $\mathfrak{c}<\operatorname{cof}\left(t_{0}\right)$?

Brendle, Khomskii, Wohofsky

Each of the following implies $\mathfrak{c}<\operatorname{cof}\left(t_{0}\right)$:

- is $(\mathbb{T})=\mathfrak{c}$
- Constant of 1-1 property for \mathbb{T}
- Constant of 1-1 property holds in classical cases.
- is $(\mathbb{S})=i s(\mathbb{V})=\mathfrak{c}$ in ZFC.
- $\mathfrak{b} \leq i s(\mathbb{L})$ and $\mathfrak{d} \leq i s(\mathbb{M})$

When $\mathfrak{c}<\operatorname{cof}\left(t_{0}\right)$?

Brendle, Khomskii, Wohofsky

Each of the following implies $\mathfrak{c}<\operatorname{cof}\left(t_{0}\right)$:

- is $(\mathbb{T})=\mathfrak{c}$
- Constant of 1-1 property for \mathbb{T}
- Constant of 1-1 property holds in classical cases.
- is $(\mathbb{S})=i s(\mathbb{V})=\mathfrak{c}$ in ZFC.
- $\mathfrak{b} \leq i s(\mathbb{L})$ and $\mathfrak{d} \leq i s(\mathbb{M})$
- $\operatorname{add}\left(\left.f m_{0}\right|_{\mathcal{B} \text { or }}\right) \leq i s(\mathbb{F M})$ but $\operatorname{add}\left(\left.f m_{0}\right|_{\mathcal{B} \text { or }}\right)=\omega_{1}$

When $\mathfrak{c}<\operatorname{cof}\left(t_{0}\right)$?

Brendle, Khomskii, Wohofsky

Each of the following implies $\mathfrak{c}<\operatorname{cof}\left(t_{0}\right)$:

- is $(\mathbb{T})=\mathfrak{c}$
- Constant of 1-1 property for \mathbb{T}
- Constant of 1-1 property holds in classical cases.
- is $(\mathbb{S})=i s(\mathbb{V})=\mathfrak{c}$ in ZFC.
- $\mathfrak{b} \leq i s(\mathbb{L})$ and $\mathfrak{d} \leq i s(\mathbb{M})$
- $\operatorname{add}\left(\left.f m_{0}\right|_{\mathcal{B} \text { or }}\right) \leq i s(\mathbb{F M})$ but $\operatorname{add}\left(\left.f m_{0}\right|_{\mathcal{B} \text { or }}\right)=\omega_{1}$

```
add(\mathcal{M})\leqis(\mathbb{FM})
```


When $\mathfrak{c}<\operatorname{cof}\left(t_{0}\right)$?

Brendle, Khomskii, Wohofsky

Each of the following implies $\mathfrak{c}<\operatorname{cof}\left(t_{0}\right)$:

- is $(\mathbb{T})=\mathfrak{c}$
- Constant of 1-1 property for \mathbb{T}
- Constant of 1-1 property holds in classical cases.
- is $(\mathbb{S})=i s(\mathbb{V})=\mathfrak{c}$ in ZFC.
- $\mathfrak{b} \leq i s(\mathbb{L})$ and $\mathfrak{d} \leq i s(\mathbb{M})$
- $\operatorname{add}\left(\left.f m_{0}\right|_{\mathcal{B} \text { or }}\right) \leq i s(\mathbb{F M})$ but $\operatorname{add}\left(\left.f m_{0}\right|_{\mathcal{B} \text { or }}\right)=\omega_{1}$

```
min}{\operatorname{cov}(f\mp@subsup{m}{0}{}\mp@subsup{|}{\mathcal{Bor}}{}),\mathfrak{b}}\leqis(\mathbb{FM})\mathrm{ but }\operatorname{cov}(\mathcal{M})=\operatorname{cov}(f\mp@subsup{m}{0}{\prime}\mp@subsup{|}{\mathcal{Bor}}{}
```


Trees adding Cohen reals

Regarding $\operatorname{add}\left(t_{0}\right)<\operatorname{cov}\left(t_{0}\right)$

Theorem

If \mathbb{T} adds Cohen reals with global reading then $\mathcal{M} \leq{ }_{T} t_{0}$ and

Trees adding Cohen reals

Regarding $\operatorname{add}\left(t_{0}\right)<\operatorname{cov}\left(t_{0}\right)$

Theorem

If \mathbb{T} adds Cohen reals with global reading then $\mathcal{M} \leq_{T} t_{0}$ and

Simply take $\Phi: \mathcal{M} \rightarrow t_{0}, \Phi(M)=\{x: \phi(x) \in M\}$
Examples:

- $\mathbb{F M}$
- \mathbb{L}^{2} and \mathbb{M}^{3}
- \mathbb{B}^{2}

$$
\mathcal{J}(\mathbb{T})=\{B \in \mathcal{B} \text { orel }: \neg \exists T \in \mathbb{T}[T] \subseteq B\}
$$

Is it equal $\left.t_{0}\right|_{\mathcal{B} \text { or }}$? Is it even an ideal?

$$
\mathcal{J}(\mathbb{T})=\{B \in \mathcal{B} \text { orel }: \neg \exists T \in \mathbb{T}[T] \subseteq B\}
$$

Is it equal $\left.t_{0}\right|_{\mathcal{B} \text { or }}$? Is it even an ideal?
The star property of \mathbb{T}
$(*)_{\mathbb{T}}: \exists \phi: A^{\omega} \rightarrow 2^{\omega}$ continuous $\forall T \in \mathbb{T} \operatorname{int}(\phi[[T]]) \neq \varnothing$

$$
\mathcal{J}(\mathbb{T})=\{B \in \mathcal{B o r e l}: \neg \exists T \in \mathbb{T}[T] \subseteq B\}
$$

Is it equal $\left.t_{0}\right|_{\mathcal{B o r}}$? Is it even an ideal?
The star property of \mathbb{T}
$(*)_{\mathbb{T}}: \exists \phi: A^{\omega} \rightarrow 2^{\omega}$ continuous $\forall T \in \mathbb{T} \operatorname{int}(\phi[[T]]) \neq \varnothing$

- $(*)_{\mathbb{T}} \rightarrow J(\mathbb{T})$ is not an ideal and \mathbb{T} adds Cohen reals $(*)_{\mathbb{T}}$ holds for $\mathbb{B}^{2}, \mathbb{L}^{2}, \mathbb{M}^{3}$

$$
\mathcal{J}(\mathbb{T})=\{B \in \text { Borel }: \neg \exists T \in \mathbb{T}[T] \subseteq B\}
$$

Is it equal $\left.t_{0}\right|_{\text {Bor }}$? Is it even an ideal?
The star property of \mathbb{T}
$(*)_{\mathbb{T}}: \exists \phi: A^{\omega} \rightarrow 2^{\omega}$ continuous $\forall T \in \mathbb{T} \operatorname{int}(\phi[[T]]) \neq \varnothing$

- $(*)_{\mathbb{T}} \rightarrow J(\mathbb{T})$ is not an ideal and \mathbb{T} adds Cohen reals $(*)_{\mathbb{T}}$ holds for $\mathbb{B}^{2}, \mathbb{L}^{2}, \mathbb{M}^{3}$
- c.r.n. $\rightarrow J(\mathbb{T})$ is σ-ideal and $J(\mathbb{T})=\left.t_{0}\right|_{\mathcal{B} \text { or }}$ $\mathbb{F M}$ has c.r.n.

Thank you

