Tree ideals and Cohen reals

Aleksander Cieślak

Wrocław University of Technology

February 2, 2023

Aleksander Cieślak Tree ideals and Cohen reals

イロト イヨト イヨト

э

Trees and tree ideals

Tree type

Let \mathbb{T} be a collection of trees on $A^{<\omega}$ such that:

• \mathbb{T} consists of perfect trees

э

Trees and tree ideals

Tree type

Let \mathbb{T} be a collection of trees on $A^{<\omega}$ such that:

- $\bullet~\mathbb{T}$ consists of perfect trees
- $\forall T \in \mathbb{T} \ \forall \sigma \in T, \ T|_{\sigma} \in \mathbb{T}$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Trees and tree ideals

Tree type

Let \mathbb{T} be a collection of trees on $A^{<\omega}$ such that:

- \mathbb{T} consists of perfect trees
- $\forall T \in \mathbb{T} \ \forall \sigma \in T, \ T|_{\sigma} \in \mathbb{T}$
- $\forall T \in \mathbb{T} \exists \{S_{\alpha} : \alpha < \mathfrak{c}\} \subseteq \mathbb{T}$ all below T and that $[S_{\alpha}] \cap [S_{\beta}] = \emptyset$ for $\alpha \neq \beta$ (large antichains)

Tree ideal

The Marczewski tree ideal t_0 consists of countable unions of \mathbb{T} -nwd sets, where $X \in \mathbb{T}$ -nwd if

$$\forall T \in \mathbb{T} \exists S \leq T, S \in \mathbb{T}, X \cap [S] = \emptyset$$

Well investigated examples:

- s₀ Marczewski ideal
- m₀, l₀ Miller and Laver ideal
- v₀ Silver, Mycielski ideal

Known for not having borel basis. Even $c < cof(t_0)$

伺 ト イヨト イヨト

As t_0 does not have borel basis

The Borel part of t_0

 $t_0|_{\mathcal{B}or}$ = borel sets from t_0

ヘロト 人間ト 人間ト 人間ト

э

As t_0 does not have borel basis

The Borel part of t_0

 $t_0|_{\mathcal{B}or}$ = borel sets from t_0

- $s_0|_{\mathcal{B}or}$ = countable sets
- $m_0|_{\mathcal{B}or} = \mathcal{K}_\sigma$ sets
- $I_0|_{Bor}$ = not strongly dominating sets

Themes in tree ideals investigation

- Consistency of $\omega_1 < add(t_0)$.
- When $c < cof(t_0)$?
- Consistency of $add(t_0) < cov(t_0)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶

э

Each of the following implies $c < cof(t_0)$:

- $is(\mathbb{T}) = \mathfrak{c}$
- \bullet Constant of 1-1 property for ${\mathbb T}$

(4 同) (4 回) (4 回)

Each of the following implies $c < cof(t_0)$:

- $is(\mathbb{T}) = \mathfrak{c}$
- \bullet Constant of 1-1 property for ${\mathbb T}$
- Constant of 1-1 property holds in classical cases.
- $is(\mathbb{S}) = is(\mathbb{V}) = \mathfrak{c}$ in ZFC.
- $\mathfrak{b} \leq is(\mathbb{L})$ and $\mathfrak{d} \leq is(\mathbb{M})$

・ 戸 ト ・ ヨ ト ・ ヨ ト

Each of the following implies $c < cof(t_0)$:

- $is(\mathbb{T}) = \mathfrak{c}$
- \bullet Constant of 1-1 property for ${\mathbb T}$
- Constant of 1-1 property holds in classical cases.

•
$$is(\mathbb{S}) = is(\mathbb{V}) = \mathfrak{c}$$
 in ZFC.

- $\mathfrak{b} \leq is(\mathbb{L})$ and $\mathfrak{d} \leq is(\mathbb{M})$
- $add(fm_0|_{\mathcal{B}or}) \leq is(\mathbb{FM})$ but $add(fm_0|_{\mathcal{B}or}) = \omega_1$

伺下 イヨト イヨト

Each of the following implies $c < cof(t_0)$:

- $is(\mathbb{T}) = \mathfrak{c}$
- \bullet Constant of 1-1 property for $\mathbb T$
- Constant of 1-1 property holds in classical cases.

•
$$is(\mathbb{S}) = is(\mathbb{V}) = \mathfrak{c}$$
 in ZFC.

- $\mathfrak{b} \leq is(\mathbb{L})$ and $\mathfrak{d} \leq is(\mathbb{M})$
- $add(fm_0|_{\mathcal{B}or}) \leq is(\mathbb{FM})$ but $add(fm_0|_{\mathcal{B}or}) = \omega_1$

 $add(\mathcal{M}) \leq is(\mathbb{FM})$

< 同 > < 国 > < 国 >

Each of the following implies $c < cof(t_0)$:

- $is(\mathbb{T}) = \mathfrak{c}$
- \bullet Constant of 1-1 property for $\mathbb T$
- Constant of 1-1 property holds in classical cases.

•
$$is(\mathbb{S}) = is(\mathbb{V}) = \mathfrak{c}$$
 in ZFC.

- $\mathfrak{b} \leq is(\mathbb{L})$ and $\mathfrak{d} \leq is(\mathbb{M})$
- $add(fm_0|_{\mathcal{B}or}) \leq is(\mathbb{FM})$ but $add(fm_0|_{\mathcal{B}or}) = \omega_1$

 $min\{cov(fm_0|_{\mathcal{B}or}), \mathfrak{b}\} \leq is(\mathbb{FM}) \text{ but } cov(\mathcal{M}) = cov(fm_0|_{\mathcal{B}or})$

< 同 > < 国 > < 国 >

Trees adding Cohen reals

Regarding $add(t_0) < cov(t_0)$

Theorem

If $\mathbb T$ adds Cohen reals with global reading then $\mathcal M \leq_T t_0$ and

$$cov(t_0) \longrightarrow cov(\mathcal{M})$$

 $\begin{vmatrix} & & \\ & & \\ add(t_0) \longrightarrow add(\mathcal{M}) \end{vmatrix}$

向下 イヨト イヨト

Trees adding Cohen reals

Regarding $add(t_0) < cov(t_0)$

Theorem

If $\mathbb T$ adds Cohen reals with global reading then $\mathcal{M} \leq_T t_0$ and

$$cov(t_0) \longrightarrow cov(\mathcal{M})$$

 $\begin{vmatrix} & & \\ & & \\ add(t_0) \longrightarrow add(\mathcal{M}) \end{vmatrix}$

Simply take $\Phi : \mathcal{M} \to t_0$, $\Phi(\mathcal{M}) = \{x : \phi(x) \in \mathcal{M}\}$

Examples:

- FM
- $\bullet~\mathbb{L}^2$ and \mathbb{M}^3
- \mathbb{B}^{2}

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

$$\mathcal{J}(\mathbb{T}) = \{ B \in \mathcal{B}orel : \neg \exists T \in \mathbb{T} \ [T] \subseteq B \}$$

・ロト ・回ト ・ヨト ・ヨト

E

990

$$\mathcal{J}(\mathbb{T}) = \{ B \in \mathcal{B}orel : \neg \exists T \in \mathbb{T} \ [T] \subseteq B \}$$

The star property of \mathbb{T}

 $(*)_{\mathbb{T}} : \exists \phi : A^{\omega} \to 2^{\omega} \text{ continuous } \forall T \in \mathbb{T} \text{ int}(\phi[[T]]) \neq \emptyset$

イロト イヨト イヨト

Э

SQR

$$\mathcal{J}(\mathbb{T}) = \{ B \in \mathcal{B}orel : \neg \exists T \in \mathbb{T} \ [T] \subseteq B \}$$

The star property of ${\mathbb T}$

 $(*)_{\mathbb{T}}$: $\exists \phi : A^{\omega} \to 2^{\omega}$ continuous $\forall T \in \mathbb{T}$ $int(\phi[[T]]) \neq \emptyset$

• $(*)_{\mathbb{T}} \rightarrow J(\mathbb{T})$ is not an ideal and \mathbb{T} adds Cohen reals $(*)_{\mathbb{T}}$ holds for \mathbb{B}^2 , \mathbb{L}^2 , \mathbb{M}^3

(4月) (3日) (3日) 日

$$\mathcal{J}(\mathbb{T}) = \{ B \in \mathcal{B}orel : \neg \exists T \in \mathbb{T} \ [T] \subseteq B \}$$

The star property of ${\mathbb T}$

 $(*)_{\mathbb{T}}$: $\exists \phi : A^{\omega} \to 2^{\omega}$ continuous $\forall T \in \mathbb{T}$ $int(\phi[[T]]) \neq \emptyset$

- $(*)_{\mathbb{T}} \rightarrow J(\mathbb{T})$ is not an ideal and \mathbb{T} adds Cohen reals $(*)_{\mathbb{T}}$ holds for \mathbb{B}^2 , \mathbb{L}^2 , \mathbb{M}^3
- c.r.n. $\rightarrow J(\mathbb{T})$ is σ -ideal and $J(\mathbb{T}) = t_0|_{\mathcal{B}or}$ $\mathbb{F}\mathbb{M}$ has c.r.n.

Thank you

・ロ・・ 白・ ・ 中・

E

590